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ABSTRACT

The elliptical three-body problem (a close binary and a nearby companion, three-dimensional case) is exam-
ined to elucidate the nature of anomalies in apsidal motion of some close binary systems. The numerical
results are presented for once- and twice-averaged problems. It is shown that the significant discrepancy
between the observed and the theoretical apsidal motion of DI Her (relativistic and classical effects) possibly
results from the close binary orbit perturbations due to a third body.

Subject headings: stars: eclipsing binaries — stars: individual (DI Herculis)

1. INTRODUCTION

The apsidal motion rate (AMR) in a close binary system
(CBS) depends upon the density distribution inside the com-
ponents, and that can be easily computed for theoretical stellar
models. The AMR observations in eclipsing binaries provide
an excellent opportunity to check the general results against
the stellar structure theory. The relation of the apsidal motion
constant k, to the initial chemical composition, masses, and
ages of the evolving main-sequence stars has been investigated
by many authors (Semeniuk & Paczynski 1968; Cisneros-
Parra 1970; Petty 1973; Odell 1974; Stothers 1974; Monet
1980; Giménez & Garcia-Pelayo 1982; Jeffery 1984; Hejlesen
1987) and is a good example of recent progress in this field. The
observational rates of the apsidal motion (and the correspond-
ing k, value) determined for several dozens of CBSs are in
reasonable agreement with the theoretical values. Obviously
this agreement will be improved with the improvement of both
stellar structure theory and observational methods. There are,
however, well-observed eclipsing binaries exhibiting significant
discrepancies between the observed and the predicted AMR.
One of them is DI Her (HD 175227; Sp: B4 V+B5 V,
P = 10.55 days). The DI Her system is interesting because of
the large orbital eccentricity (e = 0.48) and the significant dis-
placement of the secondary minimum (¢II = 0.77). Moreover,
the relativistic term AMR, should predominate in the perias-
tron motion of DI Her because of the large mass (M, + M,
~ 10 M) and small fractional radii (r ~ 0.06) of the com-
ponents (Rudkjebing 1959). Hence this system is a favorable
object for testing the predictions of general relativity (GR).

Unfortunately, because of the low accuracy of early visual
and photographic observations, reliable measurements of the
apsidal motion rate of DI Her were not available for a long
time. Martynov & Khaliullin (1978, 1980), using their own and
Semeniuk’s (1968) multicolor photoelectric data, obtained an
unexpected result: the observed apsidal motion rate of DI Her
(AMR®® = 0°0124 yr 1) is less than one-third of the theoreti-
cal value (AMR"™ = 020426 yr~') predicted by the combined
general relativistic (AMR®™, = 020233 yr ') and classical (tidal-
rotational) (AMRY = 020193 yr ') effects. Because the accu-
racy of the simultaneous determination of all orbital elements
from a light-curve solution is not high enough to give the rate
of the periastron advance directly, the only appropriate way to
evaluate AMR®™ is to assume that all orbital elements except
the longitude of periastron w are time-independent and to
investigate the phase variation of the secondary minimum or
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the difference of the periods: AP°® = P, — P, (Rudkjebing
1959). The observed value of AP°* = 0561 + 0309 obtained by
Martynov & Khaliullin (1980) (corresponding to AMR®® =
0°0124 yr ') was confirmed recently by high-accuracy photo-
electric observations (Diethelm 1986; Khodykin & Volkov
1989). Reisenberger & Guinan (1989) find AMR®® = 0°010
+ 0°003 yr ! using all the available data up to 1985.

To solve the puzzle of DI Her, several hypotheses have been
considered (see also Guinan & Maloney 1985). Moffat (1984,
1989) proposed to investigate the apsidal motion in DI Her in
terms of the nonsymmetric gravitational theory—an alterna-
tive to GR. Shakura (1985) and Company, Portillo, & Giménez
(1988) have suggested that a low rate of the periastron motion
may be explained by rapid axial rotation of one or both com-
ponents, whose rotational axes are highly inclined from the
normal to the orbital plane. In this case the precession of the
axes of the stars can occur. Reisenberger & Guinan (1989)
present very weak evidence supporting this effect, but we think
the differences in the measured values of V sin i, with time are
probably due to observational errors. As for resonance effects
involved in tidal interaction of the components (Papaloizou &
Pringle 1980), this phenomenon seems unlikely to be signifi-
cant for such a long-period system as DI Her. Hegediis &
Nuspl (1986) tried to explain the anomalies of the AMR in DI
Her by orbital precession. However, Khodykin (1989) showed
that the orbital plane precession of an eclipsing binary is
unable to distort significantly the AMR®®. Martynov and
Khaliullin and Guinan and Maloney investigated the third-
body hypothesis. Only the variations of the periastron longi-
tude have been considered using the Brown’s relationships
(Guinan & Maloney 1985), and the parameters of such a triple
system providing the desired periastron regression were found.
However, this solution does not satisfy either the triple system
stability criteria or the boundary conditions for light-curve
distortion.

At the same time, Martynov & Khaliullin (1980) attempted
to explain the observed variation of ¢II in the frame of the
two-body model by assuming that both the periastron longi-
tude and the orbital eccentricity are not constant in time. It has
been shown that the eccentricity decrease de/dt = —8 x 10~
yr~! would be enough to eliminate the discrepancy, but such
rapid circularization contradicts the binary age (t ~ 5 x 10’
yr) and, on the other hand, cannot result from classical tidal
effects (Zahn 1977). The value of ¢t .. for DI Her exceeds the
hydrogen core depletion time.
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The purpose of our investigations is to explain the anomalies
in apsidal motion of DI Her by taking into account the third-
body influence on all the orbital elements. Such an influence
should result in the systematic relative shift of the secondary
minimum giving the difference of the periods: AP =
AP°® — AP™ The theoretically expected value of AP =
2529 + 0312, corresponding to AMR™ = 020426 + 020030
yr !, can be found from Rudkjebing’s relation. Since AP°* =
0361 + 0509 (see above), the value of AP is — 1568 + 0315.
This effect should last during the time ¢, Which is at least of
the order of the interval of observations t,,; ~ 100 yr (from this
point of view Guinan and Maloney’s investigation is not
complete). By taking into account both photovisual estima-
tions and photoelectric data, we must require that the eccen-
tricity and the orbital inclination vary within the observational
errors during t.,,. Since an examination of the depths of the
eclipses in DI Her reveals no variations greater than 0.05 mag,
the change in the inclination is assumed to be less than 0°5
over the interval ¢.,.. We assume also that the triple system is
stable, and the CBS retains its eccentric orbit for the time of its
existence. If the triple system was formed not by exchange or
by capture, its age would be equal that of the binary.

2. CHOICE OF THE COORDINATE SYSTEM

Let the origin of the Cartesian coordinate system X Y Z coin-
cide with I, with the Z-axis directed toward the observer (see
Fig. 1). The elements iy, Q,,, ®,, determine the orientation of
an eclipsing binary orbit in space: iy, is the orbital inclination
relative to the visual plane XY; Q,, is the longitude of the

F1G. 1.—Coordinate system and orbital elements used in the paper. The
Z-axis is fixed to the line of sight; X is chosen arbitrarily; ¢£' is the nodal line
(the line of intersection of the orbital plane and the visual plane XY); O’ is the
barycenter of the eclipsing pair; and n and n’ are the normals to the orbital
planes.

ascending node, the angle between an arbitrary axis X and the
line of nodes &&' (the line of intersection of the orbital plane
and XY); and w,, is the longitude of periastron 7, measured in
the orbital plane from &. The index “ph” is used because the
values of i, w,,, can be determined from the analysis of photo-
metric data.

The theoretical value of (dw,,/dt)™ = AMR™ (the general
relativistic and classical effects) can be computed using well-
known relationships (Levi-Civita 1937; Sterne 1939; Barker &
O’Connell 1978).

Other coordinate systems and orbital elements can also be
used. For example, the main coordinate plane of the so-called
dynamical coordinate system can be fixed to the total angular
momentum vector £ of the CBS (the Laplace plane). The
orbital elements are i, Q, w: the inclination i of the orbital plane
toward the Laplace plane (usually very small), the longitude of
ascending node Q measured from the visual plane to the line of
nodes which is the line of intersection of the orbital and the
Laplace planes, and the periastron longitude w—the angle
between the node line and the line of apsides. Since it is impos-
sible to obtain the values i, Q, » from the photometric observa-
tions, the dynamical coordinate system is not used in this
study. It should be stressed that, in general, the value of
da/dt = d(Q + w)/dt but not that of dw/dt serves as a good
approximation to the AMR. Of course, there is no difference
between dw/dt and dw/dt when the nodes are static (dQ/dt = 0).
The theoretical expression for (dé/dt)™ was obtained by Kopal
(1978). However, often the confusion between w,,, @, and w
leads to incorrect conclusions (Batten 1973). For example,
Hegediis and Nuspl (1986), considering the dynamical coordi-
nate frame, suggested that the nodal regression (the orbital
plane precession) distorts the AMR®® (i.e., the value of dw,,,,/dt)
and may remove the observed discrepancy for DI Her. In
reality the precession correction for d@/dt is of the order of

Q| 7| dQ
dt

i2

1-— i ~
(I —cos i) o >
(since i < 0?1 in the case of DI Her, it must be less than
2 x 107%|dQ/dt|). As to the precession correction for dw,,/dt,
it seems to be negligible also:

A dwg,
dt precs

(for DI Her sin i cos i,, ~ 2 x 107%, i, = 8923). Therefore, the
orbital precession hypothesis is unable to explain the AMR
anomalies in eclipsing binaries (Khodykin 1989).

< 8in i COS iy,

dQ
dt

3. THIRD-BODY MODEL

We shall use the parameters of the eclipsing binary from
Martynov & Khaliullin (1980) and Popper (1982): 3t, = 5.15,
M, = 4.52 (in solar masses); P = 10.55017 days; e = 0.482;
ion = 8923; w,, = 151° (the periastron longitude of the relative
orbit of the secondary component differs from that of the
primary one by 180°). L, I, P', q', ', €/, i, correspond to the
third component. The upper limit M’ was found from the
mass-luminosity relation to be 1.7 M, assuming that the
luminosity L is less than 0.03(L, + L,) = 8.1 Ly. It corre-
sponds to the mean mass of A7-A8 main-sequence stars. From
the analysis of O—C variations of the photoelectric data
(Khodykin & Volkov 1989), the amplitude of the RGemer delay
was found to be less than 0.002 days (3 minutes).
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4. COMPUTATIONS

First an elliptic three-body problem (SO) at the various
mutual orientations of the orbits has been considered. To sim-
plify the model under investigation, the masses have been
assumed to be pointlike; the tidal and relativistic effects were
ignored, and the third-body motion around the center of
gravity of the binary was supposed to be unaffected. The
orbital motion of the CBS has been treated as a disturbed
Keplerian one. The coordinate system “ ph” was used.

Let us consider a binary system with masses of the com-
ponents 9, and M, (M, = qM,, q < 1), separated by the
radius vector r (see Fig. 1); A is the distance between O’, the
center of gravity of the CBS, and the third body (W' = ¢g'IM,); y
is the angle between r and A. The perturbative function for SO

18
_ AWM &1 (=g (Y
RS S i (5 P, o

where P,(cos y) are Legendre polynomials of order n. The units
of length, time, and mass are AU, years, and M, respectively.
The expansion of R and its partial derivatives has been evalu-
ated up to n =9, and the variation of orbital elements of the
CBS g, e, iy, Q, @yn, M for t > P’ was found. A fourth- to
fifth-order Runge-Kutta-Fehlberg scheme (Forsythe, Malcolm,
& Moler 1977) was used for the numerical integration of
Lagrange equations. The times of minima T ;, and T, , for the
revolution k of the binary were obtained from the condition
&(T; ;) = minimum, where § is the projection of r on the visual
plane, which is obviously true for spherical stars. The effect of
the third-body perturbations (the period difference) has been
determined from the relation

AP® = (T2,k - Tz,k-1) - (T1,k - Tl,k—l) . (2)

The consideration of the once-averaged elliptic three-body
problem (S1) allowed a significant reduction in the computing
time. The perturbative function R* was obtained by averaging
R over the orbital period P, since P € P':

R* = (2m)! LZ"RdM ~ Y RE. 3)

n=2

Only the terms of order n = 2, 3 were used for calculations:

R% = n?qM <a_2>
2 q Iy A3

x [3(1 + 4e)I2 + 3(1 — e?)J? — (2 + 3e)], (4

5 ., 1—gq\/a®
= =3 mrme( ()

x [5G + 4e?)I% + 15(1 — e2)J? — 3(4 + 3e?)], (5)

where I, J are the cosines of the angles between the radius
vector A and r(v) at the true anomaly v = 0° and 90°.

Lagrange equations for osculating elements e, iy, Qp, ©pns
and M (a = constant) have been solved numerically by the
above-mentioned scheme. The motion of the CBS during the
revolution k was assumed to be unperturbed. The values of the
true anomaly v, corresponding to the times of minima were
determined from the condition d(v;;) = minimum; then mean
anomalies M, and phases of the secondary minimum ¢II,
were found by successive iterations. Finally, the relation
AP™ = (¢II, — ¢II, _,)P gave the difference of the periods.
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FIG. 2—The coordinate system X,Y,Z, fixed to the orbital plane of the
binary. The projections of the binary’s and the third body’s orbits on the
celestial sphere are shown. The X,- and Z,-axes coincide with the radius
vector of the periastron 7 and with the normal of the orbital plane n, respec-
tively; ££' is the nodal line, and nn’ is the line of intersection of the orbital
planes.

To investigate the triple system long-term behavior, the
twice-averaged three-body problem (S2) was solved. The third-
body motion has been assumed to be perturbed.

Consider the Cartesian coordinate system X, Y,Z, fixed to
the orbital plane of a CBS (Fig. 2). The axes X, and Y, lie
within the orbital plane, X, is directed to the periastron, and
Z, coincides with the orbital normal n. Let ¢ be the angle
measured from X, to the line of intersection of the orbital
plane (viz., to the ascending node # of the third-body orbit),
and let € be the interinclination of the orbits (i.e., the angle
between the normals n and »’). Then the direction cosines of n’
are

Q =sine€sin ¢, (6a)
S = —sinecos ¢, (6b)
N =cos € (6¢)

with respect to the axes X,, Y; and Z,.
The perturbative functions for S2 were found in the form
(only the first terms are presented)

nzq/gﬁl a2
R¥*=——2"1 = r.q, 7
2(1 _ e/2)3/2 ar3 [ ] ( )
M, 14q+q a®
R = S50, ®)

21 —e?*? (1+49)?* a
where [ -] = [3(1 — e?)N? — 15¢2Q% + 6e? — 1] .
It should be noticed that the functions R** and R%* depend

upon the third-body orbit orientation relative to the periastron
of the CBS.
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According to the Lagrange equations, we get

%;L“:A[z—sgz—zvz

1 + 4e?
+ cos iph<—1+—:7 Q sin w,;, + S cos wph>] , 9)

= = 5408, (10)
di 1 + 4e? .
—d’;:—h = AN(W Q cos w,, — S sin wph) , (1)

where
_ 3n(1 — )P q
C21—€?) P2 14+q+q "

Let us now turn to the period difference AP' resulting from
the third-body perturbation in the orbital elements of the CBS,
and mainly in w,,, and e. Using formulae (6a)(6c), (9), and (10),
we get (Khodykin & Zakharov 1990)

3P3e(1 — e?)? sin @, q
2P(1—e*sin o) (1—e?)*? 1+q+4q
in Qe + A
x {2 + sin? 5[5 sin@e+4) 3]} , (12a)

sin A

A

’

APlb =

where cos 4 = cos /(1 — e?), 0° < A < 180°. The apparent
singularity in AP at o, = 180° x j (j =0, 1, ...) seems to be
easily removed:

. 15P3%(1 — e?) q
AP® = (1
( )J 2P12(1 _ e/2)3/2 1 + q + q

Although expression (12a) is rigorously correct only for an
inclination iy, = 90°, it is quite accurate for the most of the
far-separated eclipsing binaries. For DI Her, the values of ¢
and ¢, provided that AP'*(¢, €) < 0, are plotted in Figure 3.

The variations of orbital elements e, €', i, iy, €tc., have been
determined by the same numerical integration scheme. The
classical and relativistic effects were accounted for in the
periastron motion computation. Since for the binary motion
the third-body perturbations, tidal-rotational, and GR effects
are of the same order and small enough, they have been
assumed to be additive and independent. The total period dif-
ference AP was computed as in the S1 case. The integration
interval was chosen to exceed a few apsidal periods U (an
overall return time of the apsidal line).

-sin? € sin 2¢. (12b)

5. RESULTS

The numerical calculations of the three-body model have
been carried out for the values of M’ = 0.01, 0.1, 0.5, 0.78, 1.5,
and 2.0 M. To test the self-consistency of SO and S1, S1 and
S2 solutions, the orbital elements’ variations in CBSs have
been compared at ¢t = IP, t = mP’, respectively (I, m integers)
for the several space orientations of the orbits. In the case of
small mutual inclination € no solutions were found which
satisfy the observations. This result agrees with Guinan and
Maloney’s result, obtained from the analysis of Brown’s rela-
tions. The desired effect (AP'™) occurred at interinclination €
more than 21°2. It is caused by the periastron regression
or/and by a decrease in eccentricity.

SLOW APSIDAL MOTION OF DI HER

317

40° 60 80" 100° ¢

FiG. 3.—The (¢, €)-plane: ¢ is the angle between the periastron and the line
of intersection of the orbital planes nn’, and € is the orbital interinclination.
Curve 1 limits the area where the third body’s effect AP'™ s less than zero. As
examples, the solution areas (hatched) for M’ = 1.0 My, P’ = 9.2 yr (a) and
P’ =5 yr (b) are given. The lines restricting the areas (a) and (b) are drawn
according to the following conditions: the light-term effect is equal to 0.002
days (2a and 2b); the perturbation in the orbital inclination Aif;, is equal to 05
throughout ¢, (3a and 3b). The point labeled GM marks the Guinan and
Maloney’s solution.

Consider now the conditions restricting the areas of solu-
tions (Fig. 4; and Fig. 5,¢' = 0 and € = 90°, 60°):

1. The solutions for a massive third component (' > 0.78
M) are restricted by the RGemer delay (curves 5 in Figs. 5a,
and 5b). This delay is equal to zero when the third-body orbit is
close to the visual plane (e =~ 90°, ¢ = 30° for DI Her). For
such a case the following approximate expression for P’ and I
can be obtained from relation (12a):

0w 1/2
> (yr) .

— 13
m; + M, + W (13)

P~ 30(

2. The short-period solutions are restricted according to the
condition t ¢ >t (curves 4 in Figs. Sa and 5b). The duration
of the third-body effect was found to depend weakly enough on
the orbits’ interinclination.

3. The variation of the binary’s orbital inclination i, during
t.us 18 Within the observational errors and is unable to distort
the shape of the light curve. This requirement restricts the
solutions’ areas at some values of ¢ = ¢, (Fig. 4), which are
independent of mass I’ and can be found from formulae (11)
and (12a):

Perit = 9205, 790, 6205, and 330

at € = 80°, 70°, 60°, and 50°, respectively. Thus, this restriction
diminishes the area of third-body parameters {3, P, ¢} at
interinclinations € less than 60°.

To summarize the restrictions mentioned above, we see that
the area of solutions {M', P’, ¢} (Figs. 4a and 4b) and {M’, P'}
(Figs. 5a and 5b) vanishes rapidly with decreasing €. At € < 50°
no appropriate solutions were found. It should be noted that
the solutions restricted according to conditions 1-3 (see Figs. 3,
4, 5) correspond to the stable three-body systems. For a com-
parison the stability criteria of triple systems calculated
according to Harrington (1977), Szebehely & Zare (1977), Hills
(1983; coplanar case), and Roy (1979; three-dimensional case)
are shown in Figure 5 (curves 1, 2, 3a and 3b).
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F1G. 4.—(a) Space of solutions—parameters {3, P’, ¢}, providing the desired effect AP™® = — 1368 + 0215 (€ = 90°, ¢’ = 0). The masses are given in solar masses
(M). All the restrictions have been taken into account. The areas corresponding to the masses I’ > 0.78 M, are restricted by the Rdemer delay (0.002 days). The
short-period solutions are limited because of the following requirement: the third-body’s effect’s duration ¢, must exceed the interval of the binary’s observation,
tons- (D) The space of solutions—parameters {9, P, ¢} as in (a), but for € = 60°. At large values of ¢ the areas are restricted according to the requirement that the
perturbation in the orbital inclination not exceed the critical value of A}, = 0°5 during t,,, (i.c., the photometric light curve keeps the shape duringt,,,). The point
labeled GM corresponds to the Guinan-Maloney solution (' = 1.0 M, P’ = Syr, e = 59°).

An example of such a stable motion (W' =10 Mg,
P’ =105 yr, ¢ = 0.0, € = 80°, ¢ = 40°) is given in Figure 6.
The third-body orbit precesses slowly and nutates (T, =
0.5U =~ 4100 yr). The binary eccentricity varies periodically
from 0422 to 0.587. At present (¢t =0) the eccentricity
decreases at de/dt ~ —10~* yr™ !, and the longitude of perias-
tron increases at dw,,/dt ~ 0.044 yr~!. These combined varia-
tions of e and w,, provide the desired shift of the secondary
minimum relative to the primary. The orbital inclination iph

P’ (years)

llllll

0.01 0.1 1 W
Me

F1G. Sa

changes insignificantly: di,/dt < 2 x 107° deg yr!. However,
after ~5 x 10* yr eclipses will no longer be visible from Earth.

6. DISCUSSION AND CONCLUSIONS

If the accuracy of the light-curve solution is too low to deter-
mine the periastron advance directly, the only way to evaluate
the AMR in an eclipsing binary is to treat the variations of the
secondary minimum phase ¢II (or the difference of the periods
AP). With the presence of a third body, all the orbital elements

10 |
— B
0 N
<
) B
Ko
=9 1 -

0.1 1

0.01 0.1 1 M

Mo

FiG. 5b

FI1G. 5—(a) {3'-P'} solution area (hatched) for € = 90° and ¢’ = 0. Lines 1-3 indicate the boundaries of the stable motion according to stability criteria for triple
systems: 1, Harrington (1977); 2, Szebehely & Zare (1977), Hills (1983) (coplanar case); 3, Roy (1979) (a: the binary’s stability; b: the third-body motion stability,
three-dimensional case). Curves 4 and 5 are plotted according to the following conditions: (4) t., = tops; (5) the amplitude of the light-term effect is 0.002 days. (b)
{9¥-P'} solution area (hatched) at € = 60°, ¢ = 0. Curves 1-5 have the same meaning as in (a). The point labeled GM corresponds to the Guinan-Maloney solution:

M =1.0My, P' = Syr,e = 59°.
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FiG. 6—Example of stable hierarchical motion: M’ = 1.0 M, P’ = 10.5
yr, ¢’ = 0. The initial orbital interinclination € is 80°. The binary orbit’s inclina-
tion decreases slightly; the eccentncnty e varies periodically. The nodal line of
the orbits nutates with the period T, = 0.5U and precesses slowly. The
apsidal period is U =~ 8200 yr.

vary, and, therefore, this method can lead to incorrect values of
AMR®" (and, consequently, to the wrong internal density con-
centration parameter k,). In this paper, we suggested that the
discrepancy between AMR®>* and AMR®™ for DI Her can be
explained by the third-body hypothesis.

The third-body effect AP"™ was found to result from the
variations of both the eccentricity and/or the periastron longi-
tude. Up to now the case of a decrease in eccentricity has not
been considered apposite because of the possible rapid circu-
larization of the orbit. We found that the eccentricity varia-
tions depend on the third-body orbit’s orientation relative to
the apsidal line of the CBS. In a case of the third-body orbit’s
precession and of the apsidal motion in the CBS, e varies
periodically. As a result the CBS retains its eccentric orbit. This
conclusion seems to be important because it allows us to avoid
the difficulties concerning the circularization in the CBS.
Unfortunately, all the high-accuracy observational data ob-
tained did not allow us to derive exactly the parameters (9,
P’) and the orbital elements (¢, ', etc.) of the third companion.
Therefore, only the region of possible solutions was found.

If the invisible member of the triple system is a relativistic
object, then its mass may exceed the upper limit 1.7 M.
According to equation (13), its orbital period P’ is limited by 30
yr. In this case the third-body orbit must be close to the visual
plane, which seems, however, to be unlikely.

A few words about the stability and evolution of the hierar-
chical triple system discussed in this paper. Of course these
problems are too complex to be resolved here. The triple
system stability criteria in the coplanar case were obtained by
many authors, in particular by Hénon (1976), Harrington
(1977), Szebehely & Zare (1977), and Hills (1983). Hadjide-
metriou (1981) pointed out that there are no strict stability
criteria in the three-dimensional case. We have used the
empirical stability criteria of Roy (1979). It is clear from
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Figures 5a and 5b that the requirements of the third-body
motion stability (curves 1, 2, 3a, and 3b) are less severe than
those of the effect duration (curve 4) and of the light-curve limit
distortion. The point labeled GM (Figs. 4b and 5b) corre-
sponds to the stable Guinan-Maloney solution (IR’ = 1.0 M,
P = 5yr,e = 59°).

As for the triple system formation, we do not exclude the
possibility of both capture and exchange processes. If the total
energy of the binary and a single field star is negative, a bound
triple system might be formed temporarily or be hierarchical
and stable enough (Valtonen & Aarseth 1977). In any case, the
components’ ages would be different and the triple system sta-
bility constraints could be reduced or omitted. Valtonen (1976)
and Hills (1983) showed that a massive binary can capture a
low-mass field star and increase its semimajor axis and eccen-
tricity (the final value of e is approximately 0.67). DI Her is
known to be a well-separated system, and we have found that
the orbital eccentricity might change periodically over a wide
range of values. According to Hills’s conclusions (1977), the
majority of well-separated massive binaries with large eccen-
tricities in the solar vicinity might be formed by an exchange
process—the outcome of the stellar scattering. This result has
been confirmed by Hut & Bahcall (1983) in a series of numeri-
cal orbit calculations: after the encounter of a binary and a
massive field star, the lighter component of an initial binary is
ejected onto an elongated eccentric orbit, with little interaction
with the remaining massive binary. Certainly knowledge of the
properties and the evolutionary state of DI Her components
needs to be improved.

Let us consider now the possibility of the detection of the
third body in DI Her. Taking into account that the partial
luminosity of the third body L, is assumed to be less than 0.03,
its V-magnitude will be over 12.2 mag (the V-magnitude of the
eclipsing binary is 8.39 mag). Adopting the semimajor axis a’ of
the relative orbit to be less than 13 AU and the distance to DI
Her to be d ~ 500 pc, one could evaluate the maximal angular
distance between the third star and the binary p < 0702. We
think that such a faint companion could not be detected even
by speckle interferometry.

The most reliable confirmations of the third-body hypothe-
sis would be the detection of the periodic light-time effects in
O — C residuals (for both primary and secondary minima) and,
on the other hand, the consistency of the theoretically predict-
ed rates of periastron advance and of eccentricity decrease with
those yielded by the direct observations. Therefore, further
observations of this eclipsing system are urgently needed to
improve the values of the spectroscopic orbital elements, and
to obtain after a few years one more high-accuracy photoelec-
tric light curve.

We would like to express our sincere appreciation to Pro-
fessor D. Ya. Martynov and A. I. Khaliullina for fruitful dis-
cussion, and S. E. Leontjev and V. N. Sementsov for their help
in carrying out computations.

REFERENCES

Barker, B. M., & O’Connell, R. F. 1978, in Proc. Internat. School of Physics
Enrico Fermi, Course LXV, Physics and Astrophysics of Neutron Stars and
Black Holes, ed. R. Giacconi & R. Ruffini, 437

Batten, A. H. 1973, Binary and Multiple Systems of Stars (Oxford : Pergamon)

Cisneros-Parra, J. U. 1970, A&A, 8, 141

Company, R., Portilla, M., & Giménez, A. 1988, ApJ, 335, 962

Diethelm, R. 1986, BBSAG Bull., No. 81

Forsythe, G. E., Malcolm, M. A, & Moler, C. B. 1977, Computer Methods for
Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall)

Gimeénez, A., & Garcia-Pelayo, J. M. 1982, in IAU Colloquium 69, Binary and
Multiple Stars as Tracers of Stellar Evolution, ed. Z. Kopal & J. Rahe
(Dordrecht: Reidel), 37

Guinan, E. F., & Maloney, F. P. 1985, AJ, 90, 1519

Hadjidemetriou, J. D. 1981, Celestial Mechanics, 23 (No. 3), 277

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991ApJ...375..314K

320 KHALIULLIN, KHODYKIN, & ZAKHAROV

Harrington, R. S. 1977, Rev. Mexicana Astr. Ap., 3, 139

Hegediis, T., & Nuspl, J. 1986, Acta Astr., 36, 381

Hejlesen, P. M. 1987, A&AS, 69, 251

Hénon, M. 1976, Celestial Mechanics, 13, 267

Hills, J. G. 1977, AJ, 82, 8, 626

. 1983, AJ, 88, 12, 1857

Hut, P., & Bahcall, J. N. 1983, ApJ, 268, 319

Jeffery, C. S. 1984, MNRAS, 207, 323

Khodykin, S. A. 1989, Astr. Tsirk. USSR, 1536, 21

Khodykin, S. A., & Volkov, I. M. 1989, Commission 27 IAU, Infm. Bull. 3293
Khodykin, S. A., & Zakharov, A. I. 1990, in preparation

Kopal, Z. 1978, in Dynamics of Close Binary Systems (Dordrecht: Reidel), 201
Levi-Civita, T. 1937, Am. J. Math., 59, 225

Martynov, D. Ya., & Khaliullin, Kh. F. 1978, Astr. Tsirk. USSR, 1016, 1

. 1980, Ap&SS, 94, 115

Moffat, J. W. 1984, ApJ, 287, L77

. 1989, Phys. Rev. D, 39, 474

Monet, D. G. 1980, ApJ, 237, 513

Odell, A. P. 1974, ApJ, 192,417

Papaloizou, J., & Pringle, J. 1980, MNRAS, 193, 603

Petty, A. F. 1973, Ap&SS, 21, 189

Popper, D. M. 1982, ApJ, 254,203

Reisenberger, M. P., & Guinan, E. F. 1989, AJ, 97 (No. 1), 216

Roy, A. E. 1979, in Instabilities in Dynamical Systems, ed. V. Szebehely
(Dordrecht: Reidel), 177

Rudkjebing, M. 1959, Ann. d’Ap., 22, 111

Semeniuk, I. 1968, Acta Astr., 18, 1

Semeniuk, I., & Paczynski, B. 1968, Acta Astr., 18, 33

Shakura, N. 1. 1985, Soviet Astr. Letters, 11,7, 536

Sterne, T. E. 1939, MNRAS, 99, 451

Stothers, R. 1974, ApJ, 194, 651

Szebehely, V., & Zare, K. 1977, A&A, 58 (Nos. 1 and 2), 145

Valtonen, M. J. 1976, Ap&SS, 42 (No. 2), 331

Valtonen, M. J., & Aarseth, S.J. 1977, Rev. Mexicana Astr. Ap., 3, 163

Zahn, J.-P. 1977, A&A, 57, 383

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991ApJ...375..314K

