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ABSTRACT

It is well established that certain detached eclipsing binary stars exhibit apsidal motions whose values are in
disagreement with calculated deviations from Keplerian motion based on tidal effects and the general theory of
relativity. Although many theoretical scenarios have been demonstrated to bring calculations into line with
observations, all have seemed unlikely for various reasons. In particular, it has been established that the hypothesis
of a third star in an orbit almost perpendicular to the orbital plane of the close binary system can explain the
anomalous motion at least in some cases. The stability of triple star systems with highly inclined orbits has been in
doubt, however. We have found conditions that allow the long-term stability of such systems, so that the third-
body hypothesis now seems a likely resolution of the apsidal motion problem. We apply our stability criteria to the
cases of AS Cam and DI Her and recommend observations at the new Keck interferometer, which should be able to
directly observe the third bodies in these systems.

Subject headinggs: binaries: eclipsing — celestial mechanics — instabilities —
stars: individual (AS Camelopardalis, DI Herculis)

1. INTRODUCTION

Discrepancy between observation and theoretical predictions
of the apsidal motion of certain detached binary stars has
remained an outstanding problem for two decades. In the cases
of AS Cam and DI Her, for example, observed apsidal motion
rates are a fraction of the theoretical predictions based on stellar
structure, tidal, and relativistic effects.

As was first pointed out by Rudkjøbing (1959), the effect of
relativistic gravity is significant in the case of a number of
detached binary stars. Although he considered only DI Her
in detail, the number of interesting cases has grown to about
half a dozen (Koch 1977; Moffat 1984), including AS Cam
(Maloney et al. 1989).

The discovery of anomalous apsidal motion by Martynov &
Khaliullin (1980) was initially considered a possible challenge
to general relativity. Moffat (1984) invented an alternative grav-
ity theory that harbored differing predictions for the apsidal
motion of binary stars and yet maintained agreement with other
tests of general relativity. The predictive power of this theory
is weakened by the existence of a new adjustable parameter
for each star. Moreover, increasingly severe tests of general
relativity such as in Taylor &Weisberg (1989) make such large
deviations at AU scales seem unlikely. Several other, less ex-
otic, solutions have been proposed. In one scenario the rapid
circularization of the orbit occurs because of dissipation of an-
gular momentum from stellar oscillations or a large amount of
mass loss. Another reasonable guess is that the close binary
system (CBS) orbit is surrounded by a resisting medium in the
form of gas clouds. The required density well exceeds ob-
servational limits in the case of DI Her, however. These and
other alternatives are reviewed in Guinan & Maloney (1985),

Maloney et al. (1989), and Claret (1997, 1998). It is the purpose
of this paper to demonstrate the feasibility of one particular
explanation that has been put forward in the literature. Our
considerations may also find application in other triple star or
suspected triple star systems such as in Coe et al. (2002), where
a triple star model for the X-ray pulsar AX J0051�733 is pro-
posed to explain puzzling features of the spectrum of a candi-
date optical counterpart.
It is well known that the hypothesis of third stars in outer

orbits of these close binary systems can bring theory into line
with observed apsidal periods (Khaliullin et al. 1991; Khodykin
& Vedeneyev 1997), but the stability of such triple star systems
has been in doubt (Harrington 1968). We show here that the
inclusion of the apsidal motion as an additional perturba-
tion leads to the conclusion that such triple star motions can be
stable. In particular, the triple star models of Khodykin &
Vedeneyev (1997) and Khaliullin et al. (1991), which reconcile
the cases of AS Cam and DI Her with observations, are shown
to be stable. Furthermore, we show that observations utilizing
the new Keck interferometer should be able to directly image
the putative third bodies in these two systems.

2. THE LAGRANGE PLANETARY EQUATIONS
FOR THE HIERARCHICAL THREE-BODY SYSTEM

We have studied numerically the dynamical evolution of a
hierarchical triple system consisting of a massive CBS and a
third star of moderate mass. Figure 1 shows the notation used.
The calculations were done perturbatively using the disturbing
function method (Kopal 1978). We have assumed that the three
stars are pointlike and isolated from other stars. We ignore in-
ternal dynamical exchanges such as synchronization, angular
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momentum exchange, and orbital precession of the CBS.
Classical tidal effects and relativistic effects are assumed to be
independent and additive.

The disturbing functions for the CBS and the third body are
adapted fromBrown&Shook (1933, p. 14). They are, respectively,

R ¼ 4�2 m3

r

r

r 0
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n¼1
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We average R and Rtb over the mean anomalies of the CBS
and third body (hence, twice averaged). The first-order terms
of the twice-averaged disturbing functions, R2 and Rtb

2 , are
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where the masses are included via the ratios q ¼ m2=m1 and
q0 ¼ m0=m1. We choose our units of measurement to be AU,
years, and solar masses, so that the Newtonian gravitational con-
stant is G ¼ 4�2. The orientation of the third-body orbital plane
with respect to the close binary orbital plane is described by the
direction cosines (Q, S, N ) of the unit vector normal to the third-
body orbital plane.We refer the direction cosines to the periastron,
a perpendicular to the periastron, and the direction normal to the
close binary orbit. Let � be the angle between the two orbital
planes, and call the angle measured from the periastron to the line
of intersection of the orbital planes �. We then have

Q ¼ sin � sin �; ð5Þ
S ¼�sin � cos �; ð6Þ
N ¼ cos �: ð7Þ

Since we are averaging over the mean anomaly, there is no
Lagrange planetary equation for M, and furthermore the semi-
major axis a has no time dependence. The planetary equations
for the perturbation of the remaining CBS orbital elements by
the third body are
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The planetary equations for the perturbation of the third-
body orbital elements are
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where

B ¼ 3�q 1� e2ð ÞP 4=3

2 1� e02ð Þ2P 07=3(1þ q)4=3(1þ qþ q0)2=3
: ð19Þ

In writing equations (16)–( 18) we have introduced the
direction cosines of the nodal line of the third body referred to
the same CBS axes by which Q, S, and N are defined above.
These cosines are

F ¼ sin �0 � �ð Þ cos i sin !þ cos �0 � �ð Þ cos !; ð20Þ
G ¼ sin �0 � �ð Þ cos i cos !� cos �0 � �ð Þ sin !; ð21Þ
H ¼ sin �0 � �ð Þ sin i: ð22Þ

Fig. 1.—Kinematic variables describing the relative orientation of the orbits
of the CBS and the third body.
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Finally, we use cosines of the direction perpendicular to the
third-body nodal line and behind the visual plane. These co-
sines are

T ¼ cos �0 � �ð Þ cos i cos i0 þ sin i sin i0½ � sin !
� sin �0 � �ð Þ cos i0 cos !; ð23Þ

U ¼ cos �0 � �ð Þ cos i cos i0 þ sin i sin i0½ � cos !
þ sin �0 � �ð Þ cos i0 sin !; ð24Þ

V ¼ cos �0 � �ð Þ sin i cos i0 � cos i sin i0: ð25Þ

3. AN ALTERNATIVE FORMULATION
OF THE EQUATIONS OF MOTION

It is worth noting that the equations of motion can be written
in a particularly elegant fashion by noting that they determine
nothing more than an instantaneous rotation that can be re-
ferred to the CBS coordinates. The problem is then to express
d!=dt, di=dt, d�=dt, and d�=dt in terms of this angular velocity
vector (Goldstein et al. 2002, p. 174). Referring to this angular
velocity as 8, we first resolve it into three components: 8 ¼
8! þ8i þ8z. These components are related by rotation(s)
to the angular velocity components. For example, 8i is just
�di=dt referred to the nodal line �� 0. Referring to Figure 1, we
see that a rotation by ! about the z-axis brings this angular
velocity into the CBS system; thus

X
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0
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�di=dt

0

0

0
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1
CA; ð26Þ

where X, Y, and Z are the components of 8 in the CBS coor-
dinates. Proceeding in this manner, one obtains three equations
giving X, Y, and Z in terms of d!=dt, di=dt, and d�=dt. These
equations are inverted to yield

d!=dt ¼ cot i X sin !þ Y cos !ð Þ þ Z; ð27Þ
di=dt ¼�X cos !þ Y sin !; ð28Þ
d�=dt ¼�csc i X sin !þ Y cos !ð Þ: ð29Þ

Similar considerations for a circular third-body orbit re-
sult in

d�=dt ¼ X cos �þ Y sin �; ð30Þ
d�=dt ¼�cot � X sin �� Y cos �ð Þþ Z: ð31Þ

Comparing equations (27)–(29) with equations (10)–(12),
we determine the rate of rotation of the CBS frame, as mea-
sured by CBS coordinates, to be

X ; Y ; Zð Þ ¼ �A NQ
1þ 4e2

1� e2
;NS;N 2 þ 5Q2 � 2

� �
: ð32Þ

It has been pointed out by Kiseleva et al. (1998) (using dif-
ferent angles to define orbit orientations) that this formulation
admits two exact integrals and leads to a first-order elliptical
differential equation for the eccentricity. Our calculations, how-
ever, are entirely numerical and are based on equations (8)–(12)
and (14)–(18).

4. THE INSTABILITY PROBLEM OF HIERARCHICAL
TRIPLE STAR SYSTEMS

There are a couple of ways of seeing the problem of in-
stability. One approach utilizes the conservation of angular

momentum. We assume that i � �=2, so that the cot i term in
equation (10) can be ignored. This leads to a large eccentricity
excursion due to the angular momentum exchange between the
CBS and the third body. Since the disturbing function Rtb

2 de-
pends on neither M 0 (the mean anomaly) nor ! 0 (the longitude
of the periastron of the third body with respect to the ascending
node), there is no secular variation of the third-body semimajor
axis a0 and eccentricity e0. Therefore, the orbit of the third body
maintains its shape, and the magnitude of its orbital angular
momentum L 0 is a constant of motion. The direction of the
third-body orbital angular momentum, however, will change,
as the following argument shows. The orbital angular momen-
tum of the close binary system LBS is 3–10 times smaller than
L0 for the systems under investigation. Since the rotational
angular momentum of the stars is about 2 orders of magnitude
less than L0, the total angular momentum of the system is
Ltot ¼ LBS þ L0. Calculations reveal that the CBS angular mo-
mentum is transferred to the third star. Since the magnitude of
L0 can not change, this angular momentum transfer forces a
change in the orientation of the third-body orbit with respect to
the total angular momentum. Conservation of angular momen-
tum dictates the connection between � and e shown in Figure 2.
As angular momentum is transferred, the coordinate values
(e; �) slide along one of the integral curves determined from the
initial values of the eccentricities e and e0, mass ratios q and q0,
relative inclination �, and ratio of the semimajor axes a=a0. In
the presence of a small but nonzero cot i the above argument
does not take the orbit all the way to e ¼ 0, but the eccentricity
may become close enough to unity that tidal effects or even
collision destroy the system. This turns out to be the case for
DI Her and AS Cam.
We can gain additional insight into the dynamics of the

eccentricity by looking directly at the equations of motion.
More specifically, we look at equation (10) neglecting the cot i
term and further assume that the motion of the nodal line �� 0

caused by nutation and precession of the orbits is small. Under
these assumptions,

d!

dt

� �
tb

� A 2� 5Q2 � N 2
� �

; ð33Þ

d!

dt

� �
tb

�� d�

dt

� �
tb

: ð34Þ

Fig. 2.—Evolution of � and e due to angular momentum exchange between
the CBS and the third body. The loop schematically illustrates the results of
numerical integration of the equations of motion of AS Cam including the
influence of the CBS apsidal motion as an additional perturbation.
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First, we note that for � � 30� we haveQ; ST1.We see then
that the right-hand side of equation (33) is always positive.
Thus ! and � change monotonically and run over all quadrants,
never coming to rest. Therefore, the perturbations in the ec-
centricity (eq. [9]) are periodic, and the eccentricity suffers no
excursion to a value nearing unity. The situation is much dif-
ferent if � > 30�. At such inclinations, equation (33) implies in
general four values of � for which d!=dt ¼ 0. Let us examine
the motion of � at these roots. Equations (33) and (34) together
imply

d 2�

dt2

� �
tb

� sin2 � sin 2�
d�

dt

� �
tb

: ð35Þ

This tells us that the four points of stationary ! (and �) will
be stable only if sin 2� < 0. Looking at equation (9), we see
that this same condition guarantees (de=dt)tb > 0. Thus � will
wander until it reaches a value that results in an eccentricity
excursion. Again, we emphasize that these semiquantitative
arguments are limited to the extent that we neglect the cot i
term in equation (10).

The characteristic timescale for the change of eccentricity
can be obtained from equation (9):

�e �
1� e

de=dtð Þ � 0:1

ffiffiffiffiffiffiffiffiffiffiffi
1� e

1þ e

r
1� e02ð Þ3=2a03

ePm0 : ð36Þ

For DI Her and AS Cam these times are about 700 and 400 yr,
respectively, as was confirmed directly by numerical integra-
tion. Thus at first glance the conclusion seems to be that only
nearly coplanar hierarchical triple systems can be stable for
more than a few hundred years. If this conclusion were correct,
the third-body hypothesis would be eliminated as a probable
solution to the apsidal motion discrepancy.

5. A POSSIBLE RESOLUTION OF THE PROBLEM
OF INSTABILITY

We now explore the consequences of including the effect
of stellar structure (namely tidal-rotational deformation of the
CBS pair) and the relativistic effect as additive perturbations on
the motion of !. We assume that the structure effect (d!=dt)cl
and the relativistic effect (d!=dt)rel act in simple superposition
with the effect of the third body (d!=dt)tb, so that their influ-
ence can be represented by simply adding them to (d!=dt)tb.
If the combined effect of these two additional terms is of
the same order or greater than the third-body effect, that is,
if

d!

dt

� �
tb

P
d!

dt

� �
cl

þ d!

dt

� �
rel

; ð37Þ

then the motion of ! will not stop. Thus ! and � will change
monotonically, resulting in periodic perturbations of the or-
bital elements of the CBS leading to stability, as in the case of
low inclinations discussed above.

We can derive stability criteria on the basis of equation (37).
We consider the cases in which either the classical deforma-
tion effect or the relativistic effect dominates using well-known
relationships for (d!=dt)cl from Kopal (1978) and (d!=dt)rel
from Rudkjøbing (1959) and Martynov & Khaliullin (1980).

If the classical effect dominates in the sense that (d!=dt)tbj j <
(d!=dt)cl , we have

S�tb ¼
1� e2ð Þ7

1� e02ð Þ3=2
a

a0

� �3 q0

q(1þ q)

3

4
� cos2 �

� �
< Scl ¼ 10k2r

5:

ð38Þ

If the relativistic effect is predominant [ (d!=dt)tbj j <
(d!=dt)rel], then

S��tb ¼ 1� e2ð Þ3=2

1� e02ð Þ3=2
a

a0

� �3 q0a

M1(1þ q)2
3

4
� cos2 �

� �

< Srel ¼
G

c2
¼ 10�8: ð39Þ

Table 1 displays the application of these criteria to AS Cam
and DI Her. We see that, according to our hypothesis, both of
these supposed triple star systems are predicted to be stable. The
stability of AS Cam is provided by the classical effect, whereas
DI Her is stable because of the relativistic apsidal motion.

We have confirmed this behavior by means of numerical
integrations of the equations of motion. The calculations were
done perturbatively using the disturbing function method
(Kopal 1978). We have assumed that the stars are pointlike, and
the close encounters are ignored. We ignore internal dynamical
exchanges such as synchronization, angular momentum ex-
change, and orbital precession of the CBS. The apsidal motion
in the CBS caused by both the classical tidal-rotational defor-
mation of the components and the relativistic apsidal motion is
described by disturbing functions as in Khaliullin et al. (1991).
The classical tidal effects and relativistic effects are assumed to
be independent and additive. The results for AS Cam are shown
in Figure 2. Thus the angular momentum is transferred back and
forth between the third body and the CBS. These periodical
variations in e and � can be visualized as a flapping of the CBS
and third-body orbits, almost like a butterfly (Fig. 3).

6. DISCUSSION

We begin our discussion by contrasting our stability crite-
ria with those of Roy (1979), Szebehely & Zare (1977), and
Eggleton & Kiseleva (1995) for the case of DI Her using the
same orbital parameters as Khaliullin et al. (1991).

Roy (1979) allows a very close orbit of the third body,
the restriction being only that the semimajor axis satisfy a0 �
0:3 AU corresponding to a period P 0 � 18:3 days. This seems
much too close to the inner binary for stability at any inclination
of the third-body orbit.

Although Szebehely & Zare (1977) deal primarily with the
case of coplanar orbits, they indicate how their results may be
extended to third-body orbits inclined to the inner binary orbit.
We have applied their stability criteria assuming that the third-
body orbit is perpendicular to the inner binary orbital plane.
The result is that stability criterion requires a0 � 2:9 AU (P 0 �
1:5 yr). This seems more reasonable, but in fact numerical

TABLE 1

Stability Criteria for AS Cam and DI Her

System S�tb Scl S��tb Srel

AS Cam............. 3 ; 10�6 4:4 ; 10�6 3:8 ; 10�8 10�8

DI Her ............... 4 ; 10�7 10�7 (0:7 1:5) ; 10�8 10�8
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simulations suggest that this is still too close (Khodykin &
Vedeneyev 1997).

Finally, Eggleton & Kiseleva (1995) predict that the system is
stable for any third-body orbit with a0 � 1:2 AU (P 0 � 0:39 yr).

The criteria we propose prove more restrictive. From equa-
tion (39) we determine that a0 � 9:5 AU (P 0 � 9 yr). We have
confirmed the stability of the purported three-body system of
DI Her under this restriction on the third-body orbit. We also
wish to emphasize that the criteria of Roy (1979), Szebehely &
Zare (1977), and Eggleton & Kiseleva (1995) are all based on
the purely Newtonian gravitational theory of point-mass orbits.
Our criteria depend on structure effects and/or general relativ-
ity. In the case of DI Her the effect of general relativity domi-
nates. It appears that the stability of the hypothetical three-body
system of DI Her is to be found in the physics of general rela-
tivity rather than structure effects. Thus general relativity itself
provides stability to the three-body model of DI Her, which
seems necessary to bring its theoretical apsidal motion into line
with observations. A similar stabilizing role for general relativity
was found by Holman et al. (1997) in their investigations of a
planet orbiting one star of a binary system. Our criteria are some-
what more general in that structure effects are also considered.

We close with a discussion of the prospects of making direct
observations of these hypothetical third-body companions of
AS Cam and DI Her in light of recent advances in optical inter-
ferometry and adaptive optics.

Indirect evidence for a third body in AS Cam (B+B9.5,
P ¼ 3:43 days, e ¼ 0:17, V ¼ 8:6) has already been found by
Kozyreva et al. (1999) and Kozyreva & Khaliullin (1999), who
found, imposed on the timing of eclipse minima, a cyclic var-
iation with a period of 2.2 yr. They have interpreted this signal
as due to the Roemer-like influence of a third star. The calcu-
lations of Khodykin & Vedeneyev (1997) indicate that in order
to account for the anomalous apsidal motion of AS Cam, the

third body should be of about 1M	. Using this estimate, binary
masses of 3.3 and 2.5 M	 (Hilditch 1972), and the 2.2 yr pe-
riod, the semimajor axis of the orbit would be 3.2 AU. This
corresponds to a light-travel time of 27 minutes. Combining
this with the amplitude of 4.18 minutes measured by Kozyreva
et al. (1999) yields an orbital inclination of 9� with respect to
the line of sight, so that nearly the full 3.2 AU is visible to the
observer. Assuming a distance of 480 pc, the maximum an-
gular elongation is 0B007. This is twice the resolution limit of
the Keck interferometer operating at 1.5 �mwith its 85 m base-
line. The interpretation of eclipse timings by Kozyreva et al.
(1999) and Kozyreva & Khaliullin (1999) also predicts the
times of maximum elongation.
In the case of DI Herculis, no indirect indication of third

light exists. However, information from past theoretical anal-
yses provides hope that present interferometers should be
capable of directly observing the putative third body. The
analysis of Khaliullin et al. (1991) suggests that the minimum
third-body mass is about 0.8 M	 and that the minimum period
is about 7 yr. Assuming binary masses of 5.15 and 4.52 M	
(Popper 1982), we conclude that the semimajor axis is at least
8 AU. Since the orbit is expected to be highly inclined, and the
distance to DI Her is about 500 pc, we expect a maximum
angular elongation of 0B02.
Of course, the ability to resolve these third bodies is of little

use unless they are sufficiently bright. Here infrared observa-
tions are a great advantage, since the compact binary stars are
relatively massive in comparison with the hypothesized third
bodies. For example, applying the mass-luminosity relation-
ship to AS Cam, we conclude that the third star should have a
total luminosity less than the system by 4.3 mag. A simple cal-
culation based on the Planck distribution and assumed tem-
peratures of 20,000 and 6000 K for the binary and third star,
respectively, predicts that, in the H (1645 
 155 nm) and

Fig. 3.—Motion schematic. As the CBS loses angular momentum, its orbit overturns and eccentricity increases to a value close to unity. If the apsidal motion of
the CBS is included as an additional perturbation, then � and e oscillations are moderated, and the triple system orbits move back and forth like a butterfly.
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K (2200 
 480 nm) bands, the third star is dimmer by only
about 1 mag. A similar calculation for DI Her predicts that in
the H and K bands the third star is dimmer than the system by
3.5 mag. Finally, the magnitudes of these systems are such that
the compact binary stars may serve as natural guide stars for
adaptive optics in the case of the Keck interferometer.

Bolstered by indirect evidence in the case of AS Cam and
dynamical stability indicated by the considerations of this pa-
per, the case for a third-body solution to the long standing
problem of anomalous apsidal motion is stronger than ever.
The final judgment, however, may soon be expected from the
current generation of interferometers.
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